
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Solving the Word-based Puzzle Game Smartle

Azmi M. Bazeid - 13522109

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
Email: azmibazeid@gmail.com

Abstract— This paper explores the application of brute-
force/backtracking and greedy algorithms to solve Smartle, a
word-based puzzle game requiring the formation of valid five-
letter words. The author presents a program designed to "crack"
the game, efficiently identifying solutions for any given letter grid.
The brute-force/backtracking approach systematically explores
all letter combinations, guaranteeing a solution. In contrast, the
greedy algorithm prioritizes high-scoring letter placements,
aiming for an optimized solution path. The author analyzes the
effectiveness and trade-offs of the approach.

Keywords—backtracking, bruteforce, greedy, puzzle, word-based

I. INTRODUCTION

Smartle is a captivating word puzzle that challenges your
vocabulary and strategic thinking. Imagine a 5x5 grid, where
each square holds a letter. Your task is to rearrange these letters
by swapping any two tiles by dragging and dropping any two
tiles, regardless of their position. However, the true objective
lies beyond simple rearranging. You must craft valid five-letter
English words across all five rows of the grid, striving for the
most efficient solution with the least number of swaps.

This seemingly straightforward premise quickly transforms
into a brain-teasing exercise. You'll need to juggle potential
word combinations while strategically planning swaps to
achieve the optimal solution. Each move can unlock new
possibilities, but it can also disrupt previously formed words.
Smartle becomes a dance between foresight and adaptation,
demanding both a rich vocabulary and the ability to think several
moves ahead.

Human players naturally develop strategies when tackling
Smartle. One common tactic involves focusing on the least
frequent letters in the grid early on. These characters (like J, Q,
and X) offer fewer word formation possibilities, so addressing
them first can open up more options later. However, the true
challenge often arises when forming the final word. With four
rows filled, the remaining letters might not readily rearrange into
a valid five-letter term. This scenario can leave players feeling
stuck, searching for a solution that may not exist.

This is where the beauty of an algorithmic approach lies. By
incorporating these human strategies and difficulties, we can
create a program that mimics the thought process behind
Smartle. The algorithm can prioritize using less common
characters early, similar to a human player. Additionally, it can
analyze the remaining letters after forming the first four rows,

replicating the "stuck" scenario and exploring alternative
arrangements to find a valid solution. This integration of human
challenges translates into a more robust and adaptable program
capable of tackling various Smartle puzzles.

This paper delves into efficient solution-finding methods for
Smartle, a word puzzle game that challenges players to form
valid five-letter words. We will compare and analyze different
algorithms to determine the most effective approach.
Fortunately, several key characteristics of the game can be
exploited to expedite the search for good solutions. These
include the finite number of possible five-letter words, the
dynamically changing pool of available letters after each swap,
and the inherent structure of the 5x5 grid. By leveraging these
factors, we aim to develop an algorithm that can efficiently
navigate the search space and identify high-quality solutions in
a timely manner.

II. THEORY

A. Brute-force Search

Brute-force search, also known as exhaustive search, is a
straightforward problem-solving technique applicable to
various scenarios. It involves a systematic evaluation of all
possible solutions within a defined problem space.

Key characteristics of brute-force search:

• Guaranteed Solution: If a solution exists within the
defined space, brute-force will find it by examining
all possibilities.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

• Computational Cost: The time and resources
required to explore all solutions can grow
exponentially with the size of the problem space.
This can render it impractical for complex problems
with a vast number of possibilities.

• Limited Heuristics: Brute-force doesn't rely on any
specific knowledge or insights about the problem. It
simply tests every option one by one.

The algorithm presented will make use of the brute-force
search. The author proposes a more nuanced approach that
leverages the characteristics of Smartle to optimize the
brute-force search. Instead of blindly exploring all letter
arrangements, the algorithm focuses on evaluating
complete five-letter words. This initial focus on valid
words reduces the search space significantly compared to a
naive brute-force approach that considers every letter
combination.

B. Backtracking

Backtracking is a powerful algorithmic technique for solving

problems that involve finding all possible solutions or a single
solution that meets specific constraints.

It employs a systematic, incremental approach to explore a
tree of potential solutions, meticulously building candidates and
strategically backtracking when dead ends are encountered.

Here's a breakdown of how backtracking works:

1. Initialization

 Define the problem space and the constraints that valid
solutions must adhere to. Establish a data structure to represent
partial solutions (often as a list or array). If necessary, set up a
mechanism to track solutions that have already been found.

2. Recursive Exploration

 The core of backtracking lies in recursion. A function is
designed to explore potential solutions by making choices that
extend the current partial solution.At each step, a decision is
made, adding a new element or taking an action that expands the
partial solution. This decision-making process might involve
iterating through all available options or evaluating a condition
for each option.

3. Constraint Checking

 After a choice is made, a crucial step is to verify if the
extended partial solution still adheres to all the problem's
constraints. If it does, the exploration continues. If a constraint
is violated, it signifies that the current path leads to a dead end.

4. Backtracking

When a constraint violation occurs, the algorithm
"backtracks." It discards the most recent choice and returns to
the previous decision point in the search tree. This allows
exploration of alternative options.

5. Base Cases

The recursive function typically has base cases that
determine when to stop the exploration. These cases might
involve:

• Reaching the final level of the search tree, indicating a
complete solution has been found (and possibly stored
or returned).

• Encountering a situation where no more valid choices
can be made, signaling an exhausted branch that won't
lead to a solution.

Backtracking can be considered an optimized version of the
brute-force approach. While brute force exhaustively tries every
single possible combination, backtracking intelligently prunes
the search space by incorporating constraints and backtracking
from dead ends. This significantly reduces the number of paths
explored, making it more efficient for problems with well-
defined constraints.

C. Greedy Algorithm

A greedy algorithm is an optimization technique that tackles
problems by making the choice that seems best at the moment,
hoping it will lead to a globally optimal solution in the end. It
follows a "seize the best opportunity now" approach without
necessarily considering the long-term consequences of those
choices.

Core Principle

The fundamental idea behind a greedy algorithm is to iteratively
select the option that appears most promising at each step. This
selection is based on a specific criterion that defines what "best"
means for the given problem.

Structure of a Greedy Algorithm

 a. Initialization:

 Set up the problem and establish the selection criteria (how
to determine the "best" option).

 b. Iterative Choice Making:

 The algorithm enters a loop where it iteratively makes choices
based on the selection criteria. At each step:

• It evaluates the available options.

• It selects the option that appears to be the most optimal
according to the criteria.

 c. Solution Construction:

 As the algorithm makes choices, it builds up a solution
incrementally. The chosen options are typically added to a data
structure like a list or array.

 d. Termination:

 The loop continues until a stopping condition is met, which
might involve:

• Reaching the maximum number of allowed choices.

• Fulfilling a specific goal condition.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Advantages:

• Simplicity: Greedy algorithms are often easy to
understand and implement due to their step-by-step
approach.

• Efficiency: In many cases, greedy algorithms can find
good (sometimes even optimal) solutions quite
efficiently compared to exhaustive search methods like
brute force.

Disadvantages:

• Non-Optimality: Greedy algorithms don't guarantee
finding the absolute best solution in all cases. The focus
on the "best" option at each step might lead the
algorithm down a path that overlooks a better overall
solution.

• Problem Dependence: The effectiveness of a greedy
algorithm heavily depends on the specific problem
being solved. It works well for problems that exhibit a
"greedy choice property," where the locally optimal
choices at each step genuinely lead to a globally
optimal solution.

Heuristics

Heuristics are essentially "rules of thumb" or educated guesses
that provide a way to make decisions within an algorithm. They
are based on experience, knowledge of the problem domain, or
common-sense observations. While they don't guarantee the best
possible solution, they offer a practical approach to navigate the
search space effectively. Heuristics offer the following benefits:

• Reducing Search Space: By leveraging heuristics,
algorithms can prioritize exploration of more
promising areas of the solution space, significantly
reducing the number of paths to be examined. This is
particularly beneficial for problems with vast or
exponential search spaces.

• Finding Good (or Optimal) Solutions: Well-designed
heuristics can often lead algorithms to good, near-
optimal, or even optimal solutions in a reasonable
amount of time. This makes them valuable for
problems where finding the absolute best solution
might not be feasible due to time or resource
constraints.

• Guiding Exploration: Heuristics can act as a compass,
directing the algorithm towards areas that are more
likely to contain solutions based on domain-specific
knowledge. This targeted exploration enhances
efficiency compared to random or exhaustive search
approaches.

D. Depth-first Search

Depth-first search (DFS) is an algorithm for traversing a tree
or graph data structures. It's a systematic exploration technique
that delves as deeply as possible along each branch before
backtracking to explore other options. Here's a comprehensive
explanation of DFS:

Core Idea:

DFS starts at a root node (in a tree) or any arbitrary node (in
a graph) and explores its connected neighbors. It then
recursively visits each neighbor's unvisited neighbors,
essentially going down one path at a time until it reaches a dead
end (a node with no unvisited neighbors). Once at a dead end,
the algorithm backtracks, returning to the most recent node that
has unvisited neighbors, and explores those instead. This process
continues until all possible paths have been explored.

1. Initialization:

• Mark all nodes in the graph or tree as unvisited.

• Choose a starting node (root node in a tree or any node
in a graph).

2. Recursive Exploration:

• Mark the current node as visited.

• Iterate through all the unvisited neighbors of the
current node.

o For each unvisited neighbor:

▪ Recursively call the DFS function on
that neighbor. This is the essence of
depth-first exploration.

3. Base Case (Backtracking):

• If the current node has no unvisited neighbors (i.e., a
dead end), backtrack. Backtracking involves returning
from the current function call, allowing the previous
recursive call to explore its unvisited neighbors.

E. Dynamic Programming

Dynamic programming (DP) is a powerful optimization
technique used to solve problems by breaking them down into
smaller, overlapping subproblems. It solves these subproblems
once and stores the results to avoid redundant computations,
leading to significant efficiency gains.

The key to dynamic programming is identifying that
problem P can be decomposed into smaller subproblems
denoted by (where represents a specific subproblem
instance). These subproblems typically share a specific structure
or property, where:

 Optimal Substructure: Each subproblem has an optimal
solution that can be constructed from the optimal solutions to its
subproblems. This aligns with the Bellman Principle.

 Overlapping Subproblems: There exists a significant
overlap between the subproblems . Solving the same
subproblem multiple times leads to redundant computations.

III. ALGORITHM ANALYSIS

 Before we start designing the algorithm. It helps to know
several things:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

a. The number of possible 5 letter words and the
distribution of the characters

The implemented program uses a dictionary of around 8600
5-letter words. The letter frequency plot is as follows:

b. The number of possible valid combinations

There are possible arrangements of the
letters. However, we can only form valid English words, so

there are at least 5 words
combinations. On a typical computer, a program can do

around to operations per second, so it is important
that we don’t naively attempt the problem. Note that the
number of possible valid combinations is still less than the
number of possible 5 words combinations because we are
limited to the possible letters given in the beginning of the
game.

Under the following knowledge above, we can start developing
the algorithm.

It is best to split the problem into two parts:

1. Finding the ideal 5-word combinations.

2. Finding the minimal number of swaps needed to
convert the initial 5x5 grid to the one found in (1).

We will design an algorithm to solve (2) first, and then (1).

(2) is well-known to be NP-hard (it is the same problem as
finding the minimal number of swaps needed to convert one
string to another string of equal length but different character
positions). To efficiently solve (2), we will use greedy-based
heuristics that are suitable to the nature of the game. Given two
configurations (the original one and the one generated in (1)),
the (approximated) minimal number of swaps can be generated
as follows:

i. Given the 5 words generated in (1), there are
 possible configurations. Choose the

combination with the most letters matched with the
initial configuration. After choosing the specified
configuration, we can count the (approximated)
minimal number of swaps needed.

ii. Any letter in the correct position should not be
swapped.

iii. If there are 2 cells where swapping increases the
number of letters matched by two, then swap those two
cells.

iv. Repeat (iii) until it is not possible.

v. Assuming (ii) and (iii) are not possible, find the first
cell such that it is not matched. Then swap that cell with
the (another) first cell so that when it is swapped, the
number of letters matched is increased by 1. Repeat
step (ii) - (v) until every letter is matched.

(2) can only be used when step (1) is done. There are many ways
to do (1). However, the chosen way to do step (1) is based on an
approach like how humans solve the problem. The human-based
approach is to initially form the words using rarer letters. If the
first four words have been formed, but the last 5 letters can’t be
used to form a word, then the human-based approach is to
modify the first four words. The translation of this human
approach to the computing approach is to use backtracking. The
backtracking used in the algorithm to solve (1) is as follows:

i. Sort the dictionary of 5 letter words by rarity of the
characters.

ii. The recursive backtracking function is called.

iii. If the size of the answer dynamic array is already 5.
Then we can add this configuration to the list of
configurations that will be checked by part (2) of the
algorithm. Return out of the function to the calling
function; go to step (iv).

iv. Iterate every word in the dictionary. For every word
that is not already visited, it pushes that word (in the
sorted dictionary) to the answer dynamic array and
calls the recursive backtracking function.

 Step (i) of part (1) of the algorithm needs to be elaborated.
There are many ways to sort the dictionary. One particularly
naive but effective way is to weigh the words by the sum of the
frequency of each letter. For instance, if letter ‘a’ occurs 5 times,
‘b’ occurs 3 times, and ‘c’ occurs 2 times, then the word ‘abbcc’
is given a weight of . We can then sort the
words in the dictionary by ascending weights. Another way is to
shuffle the dictionary. However, this approach leads to fewer
configurations, and thus is not preferred. The opposite approach
of sorting the weights descending leads to worse answers, and
thus is also not preferred

 There are further issues in (1). It is needed to know when to
stop generating the configurations since there are many
combinations that can’t be checked by the average computer.
We can specify a limit on the number of configurations
generated by (1) so that the search stops when it has reached this

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

limit. The program's user can also specify this limit according to
the amount of time they can afford to.

 Another completely different approach to (1) is to use
dynamic programming. In the dynamic programming approach,
there is a bitmask of 25 bits. Each bit corresponds to a letter in
the 5x5 grid. For every submask where multiple of 5 bits are set,
we can store the dynamic array consisting of all the possible
strings that can be formed such that for every string, the
remaining characters left (which is also a multiple of 5 since a
multiple of 5 subtracted by 5 is still a multiple of 5) can also be
used to form 5 letter words. This solution is much more efficient
than the brute force solution. However, there are two issues
compared to the backtracking solution. The first issue is that it
is computationally more expensive in the game with 5x5 grid.
The second issue is that it is not flexible as compared to the
backtracking solution; the dynamic programming approach
doesn’t allow to generate a single solution until all of the states
have been figured out. For these two reasons, the dynamic
programming approach is not used in generating the
configurations to be checked (using part (2) of the algorithm).

IV. IMPLEMENTATION ANALYSIS

For the initial configuration given in the introduction, the
implemented program has figured out the (approximated)
minimal number of swaps to be 10. This is currently the most
optimal score in the leaderboard of the game.

The program solved the problem in around 6 minutes, by
limiting the number of configurations generated by step (1) of
the algorithm to exactly 100000 configurations. A shorter limit
of 10000 gives a worse solution using 12 swaps but ran in less
than 10 seconds. A larger limit of 1000000 configurations gives
the same solution using 10 swaps but ran for 104 minutes (about
1 hour 44 minutes) and thus a larger limit in this scenario is not
ideal.

V. CODE

1. Sort the initial dictionary ‘words.txt’ based on the
weights as defined previously. The output is a sorted
dictionary ‘priority_words.txt’ that will be used in the
program in the backtracking part of the code.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

2. Stores the possible valid configurations by
backtracking.

3. Implements the greedy heuristic as defined previously
to evaluate a particular word combination.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

4. The main program initially calls the backtracking
function. Then, each possible word combination is
evaluated using the greedy heuristic, and the one with
the minimal number of moves is chosen.

VI. CONCLUSION

Both backtracking and greedy heuristic approaches prove
highly effective in solving the word-based puzzle game Smartle.
While these algorithms may not be theoretically optimal or
exhaustive, they consistently outperform human players by a
significant margin, demonstrating their success. Moreover,
analysis of program-generated solutions reveals a surprising
level of ingenuity.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Dr. Ir. Rinaldi,
M.T., my lecturer for the IF2211 Algorithm Strategy course.
Their guidance and instruction were instrumental in my
understanding of the concepts presented in this paper.

Furthermore, I am grateful to Allah for his guidance and
providence throughout this endeavor.

REFERENCES

[1] Smartle - your daily word puzzle. (2024, June 8). Smartle.
https://smartle.net/

[2] Munir, R. (2024, June 11). Algoritma runut-balik (backtracking).
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian1.pdf

[3] Munir, R. (2024, June 11). Algoritma runut-balik (backtracking).
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian2.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari
makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Azmi Mahmud Bazeid, 13522109

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian2.pdf

	I. Introduction
	II. Theory
	A. Brute-force Search
	B. Backtracking
	C. Greedy Algorithm
	D. Depth-first Search
	E. Dynamic Programming

	III. Algorithm Analysis
	IV. Implementation Analysis
	V. Code
	VI. Conclusion
	Acknowledgment
	References

